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Abstract: Statistical process control (SPC) identifies any nonrandom patterns in the system output variables of a water distribution system
(WDS) by comparing them to their normal historic mean and variance. While each SPC method has different performance characteristics,
there has been little effort expended to develop a hybrid method that combines the different characteristics. This paper proposes a hybrid
SPC method that combines a modified Western Electric Company (WECO) method and the cumulative sum (CUSUM) method. First, the
original WECO method is modified to incorporate a user-defined parameter c that manipulates the tolerance for warning and control limits to
fit the specific network of interest. Then, the best parameter set is identified for each of the two individual methods so that coupling them
should not increase false alarms. The detection effectiveness and efficiency of the WECO, CUSUM, and hybrid methods were compared by
using common data sets obtained from a hydraulic model of the Austin network. The results showed that a simple coupling of individual
SPC methods with different detection characteristics can significantly improve pipe burst detection probability while reducing false alarm
rates and average detection time. DOI: 10.1061/(ASCE)WR.1943-5452.0001104. © 2019 American Society of Civil Engineers.

Introduction

Water distribution pipe burst occurs when a pipe ruptures from
pipe deterioration, excessive pressure, and ground shifting due
to temperature changes and earthquakes or a combination of these
factors; the pipe burst causes a water loss (Qloss) to escape the
water distribution system (WDS). With the exception of large pipe
bursts, customers cannot clearly recognize the occurrence of a
burst pipe until they receive a notice from the water utility and
continue with their normal usage (Qnormal). The overall head
losses in the pipes increase owing to the increased total quantity
of water (Qloss þQnormal) flowing through the system (Jung et al.
2015). When a pipe bursts, customers can experience consistent
service interruptions due to low pressure. A burst pipe can cause
liquefaction of the surrounding soil and eventually collateral
damage, such as sinkholes. In addition, soil particles can enter the
water distribution system through the damaged portion of the
pipe and cause water discoloration. Therefore, burst pipes should
be rapidly detected to prevent these negative effects on the water
system and water quality, which lead to customer complaints and
dissatisfaction.

Once detected, the ruptured pipe should either be repaired or
replaced. Therefore, the main challenges in pipe burst detection
are determining whether a burst has actually occurred and then pin-
pointing the exact location. The effective and efficient detection of
a burst pipe is the most critical first step in returning the system
to normal. The repair team of the water utility is dispatched to
shut down the valves close to the failed pipe in order to isolate

the damaged section (Jun and Loganathan 2007). Locating burst
pipes is beyond the scope of this study.

During the last two decades, many data-driven methods have
been proposed for detecting pipe burst through an analysis of
the affected system output data (i.e., the pressure and pipe flow rate
in a WDS) (Puust et al. 2010; Wu and Liu 2017). Mounce and
Machell (2006) proposed two artificial neural network (ANN)
models with different time-delay schemes to identify abnormal pat-
terns in pipe flow data. Ye and Fenner (2011) introduced a linear
Kalman filter (LKF) model to detect burst pipes by comparing the
estimated and measured system output variables (SOVs). Romano
et al. (2014) proposed a comprehensive pipe burst detection model
based on ANN, statistical process control (SPC), and the Bayesian
inference system. Other methods applied have included the expect-
ation maximization method (Romano et al. 2013) and time series
model-based approach (Mounce et al. 2011b). While most previous
methodologies can only be applied to consistent operating condi-
tions (or many false alarms will be triggered because measurements
are affected by changes in operating conditions), Jung and Lansey
(2015) developed a nonlinear Kalman filter (NKF) method to
estimate nodal group demand and pipe flow rates and detect burst
pipes under varying operating conditions. The most widely used
detection method is SPC, which identifies any nonrandom patterns
in SOVs by comparing them to their normal historic mean and
variance (Jung et al. 2015).

Jung et al. (2015) compared seven SPC methods by using a
common data set with respect to their detection effectiveness
and efficiency. Detection effectiveness indicates how well a method
detects burst pipes and avoids false alarms, and efficiency refers to
the expected time required for detection. The detection probability
(DP) and rate of false alarms (RF) were used as indicators for the
former, whereas the average detection time (ADT) was calculated
for the latter. Three univariate methods—Western Electric Com-
pany (WECO) rules, the cumulative sum (CUSUM) method, and
the exponentially weighted moving average (EWMA) method—
were compared to multivariate methods. The results showed that
the univariate methods outperformed the multivariate methods
overall. While no significant benefits are derived from utilizing
the correlation between meter data obtained with the latter method,
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the former method, with a long memory of past data (i.e., CUSUM
and EWMAmethods), even detected small bursts and avoided false
alarms while having shorter ADTs than the other methods (Jung
et al. 2015).

Hagos et al. (2016) introduced a linear-programming-based
model to optimize the meter locations for WDS pipe burst detection
and investigated the pipe burst characteristics for detectability with
the WECO method. Their investigations, based on a single pipe
flow and pressure meter’s performance, confirmed that the WECO
method can quickly detect short-term large mean shifts in the pres-
sure and pipe flow rate despite the relatively high RF. Therefore,
an interesting research topic is the degree of improvement that can
be achieved by combining multiple SPC methods with different
performance characteristics.

Given that the period during which an abnormal signal clearly
remains in the system, output data differs for burst magnitude, tim-
ing, location, and demand randomness in a neighborhood area. A
hybrid SPC method (consisting of individual methods with differ-
ent detection characteristics) has the potential to rapidly detect burst
pipes of various magnitudes and characteristics (i.e., to provide
highly sensitive and consistent detection). However, few efforts
have been made to develop a hybrid SPC method that incorporates
the mechanisms of different SPC methods.

An alternative way of improving detectability, rather than using
a high-detectability method, is to increase the amount of informa-
tion available; this is affected by the amount of high-quality data
available, the sampling frequency, number of meters, type of meter,
and meter location, among other factors. While many data sampling
approaches have been proposed to select and provide quality data
for pipe burst detection (Farley et al. 2010, 2013; Huang et al. 2012;
Zheng and Yuan 2012), the basis of the data sampling design is
to analyze the sensitivity of the data sampling frequency in terms
of detectability and determine the best frequency (Mounce et al.
2011a). Therefore, another research question is the degree to which
the data sampling frequency affects the detectability of individual
and hybrid SPC methods and the optimal frequency.

In order to answer the preceding two research questions, this
paper proposes a hybrid SPC method that combines a modified
WECO method and the CUSUMmethod. First, the original WECO
method is modified to incorporate a user-defined parameter c that
manipulates the tolerance for warning and control limits to fit the
specific network of interest. Then, the best parameter set is iden-
tified for each of the two individual methods so that coupling them
should not increase the false alarms of the proposed hybrid method.
The detection effectiveness and efficiency of the three detection
methods were compared by using common data sets obtained from
a hydraulic model of the Austin network: (1) a long time series of
pipe flow rates was generated at five meter locations at 5-min time
intervals with and without pipe bursts; and (2) data from one to
five meters were provided to the methods with five different data
sampling intervals (dt ¼ 5, 10, 15, 30, and 60 min).

Methodology

The details of the normalization, modifiedWECOmethod, CUSUM
method, proposed hybrid method, and data generation for compar-
ing the three methods are presented here. Refer to Jung et al. (2015)
for the formulation of the three measures: DP, RF, and ADT.

Normalization

SPC is based on the Shewhart control chart, which plots the mean
values (centerline) of an SOV, warning limits (WLs), and control
limits (CLs) (Shewhart 1930). While WLs are generally multiples

of the standard deviation of the SOV, CLs are thresholds beyond
which an alarm is issued. In a dynamic system (e.g., a WDS), the
Shewhart control chart has a time-varying centerline and limits.
Therefore, the measured value of each SOV is normalized by

zi ¼
xi − x̄i
σi

ð1Þ

where zi = standard score of an SOVat time i; xi = measured value
at the ith time period; and x̄i and σi = mean and standard deviation,
respectively, of the SOV’s value at the ith time period.

Modified WECO Method

Jung et al. (2015) confirmed that the original WECO method
(Romano et al. 2014) has higher DP and RF than multivariate meth-
ods. In order to be employed in a hybrid detection method, the
original WECO method should first be modified to eliminate
the risk of false alarms while maintaining high DP. The modified
WECO method applies the following four decision rules to detect
pipe bursts:
1. Any single standard score is beyond �4cσ CL.
2. Two of three consecutive standard scores are beyond the

�3cσ WL.
3. Four of five consecutive standard scores are beyond the

�2cσ WL.
4. Eight consecutive standard scores are beyond the �1cσ WL.

In this method, c is a user-defined parameter that manipulates
the widths of the WLs and CLs (tolerance for alarm) for the specific
WDS of interest. The original WECO method (Romano et al. 2014)
consists of the four rules with c ¼ 1. The rules are applied to one
side of the centerline (zi ¼ 0) at a time. Therefore, a score immedi-
ately followed by another score on the other side of the centerline
outside the WLs will not be considered as a nonrandom pattern.

The best value of c should be identified a priori by calculating
detectability measures with varying c values. In the proposed hy-
brid method, the modified WECO method serves to capture short-
term large bursts. Because including the WECO method should not
increase the false alarms of the hybrid method, the main goal of the
parameter estimation is to find the value of c that produces an RF of
0% and reasonably high DP. The original and modified WECO
methods can consider eight consecutive past measurements at most
when used to make a detection decision. The probability that eight
consecutive measurements are beyond 1σ WL is approximately
0.01% (¼ 0.31738 × 100%).

CUSUM Method

While the standard score of SOV measurements is directly used as
an anomaly indicator in the WECO method, the CUSUM method
collects the residual difference between the standard score and user-
defined reference value K over time (Jung et al. 2015; Misiunas
et al. 2006). The CUSUM method uses upper and lower CUSUM
control charts on one side to calculate SUMþ

i and SUM−
i , respec-

tively, as

SUMþ
i ¼ max½0; SUMþ

i−1 þ zi − K� ð2Þ

SUM−
i ¼ max½0;SUM−

i−1 − zi − K� ð3Þ

where SUMþ
0 ¼ SUM−

0 ¼ 0. If either SUMþ
i or SUM−

i exceeds the
user-defined decision interval H, the system is considered to be out
of control (i.e., pipe burst). The two parameters K and H should be
estimated for the specific network to apply the method.

© ASCE 06019008-2 J. Water Resour. Plann. Manage.
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The CUSUMmethod can consider all past measurements before
the cumulative sums are reset to zero [Eqs. (2) and (3)]. Therefore,
the CUSUM method has a much longer memory of past data
than the WECO method, so it can detect even small mean shifts
in the values of SOVs (Jung et al. 2015).

Proposed Hybrid Detection Method

The proposed hybrid detection method uses the (1) modified
WECO method to promptly detect short-term large bursts and
(2) CUSUM method to identify long-term small bursts. The two
individual methods are simply combined because each is tuned
so that coupling them should not increase the rate of false alarms
of the hybrid method. The final decision on detection is made based
on ensembles (combinations) of detection decisions made with the
two individual methods (Fig. 1). A sophisticated decision support
method is not employed to derive the final decision in the event that
the modified WECO and CUSUMmethods disagree (e.g., no alarm
with WECO but an alarm with CUSUM). Therefore, a WDS is con-
sidered to be out of control when either the modified WECO or
CUSUM method issues an alarm (Fig. 1).

Two speculations were formulated that were later confirmed by
the results: (1) DP increases if the two individual methods detect
different sets of pipe burst events (i.e., the events detected by
WECO are not subsets of those detected by CUSUM method);
and (2) ADT decreases if the two detection strategies are actually
adopted in the hybrid method.

Data Generation

The performances of the modified WECO, CUSUM, and hybrid
methods were compared with regard to DP, RF, and ADT by using
common data sets generated with an EPANET hydraulic model
(Rossman 2000). Two data sets were generated: control and out-
of-control data. The control data represented the measured SOV
under normal naturally random system conditions and were gener-
ated based on randomness in nodal demands. RF was computed by
using the control data set. In contrast, the out-of-control data were
generated based on demand randomness and pipe bursts. DP and
ADT were calculated with the control data.

The emitter discharge coefficient C of the orifice equation
(q ¼ Cpa, where q is the burst flow, p is the nodal pressure, and
a is the emitter pressure exponent) in EPANET was randomly se-
lected within a predefined range to produce random pipe bursts.
The location, magnitude, and timing characteristics of the pipe
bursts were randomized. The advantage of using synthetic data is
that the performances can be tested under various burst conditions
(e.g., with respect to magnitude and timing) with exact information

on the pipe burst and system conditions. Most previous pipe burst
detection studies on real-life events in a network structuralized into
district metering areas were based on a limited set of pipe bursts
[e.g., burst sizes mostly ranged between 5% and 50% of the mean
total system demand (Wu and Liu 2017)]. For more details on the
data generation, refer to Jung et al. (2015) and Hagos et al. (2016).

Study Network

The three detection methods were tested on burst pipes generated
from the Austin network with 126 nodes and 90 pipes (Fig. 2)
(Brion and Mays 1991; Jung et al. 2015). The mean total demand
of the Austin network was 726 L=s. A long time series of pipe flow
rates with and without pipe bursts was generated at a 5-min time
interval with the network’s hydraulic model. Nodal demands were
randomly sampled from a normal distribution with a coefficient of
variation of 0.1 (Kapelan et al. 2005; Jung et al. 2014; Surendran and
Tota-Maharaj 2015). It was assumed that the demands had a strong
temporal correlation because of diurnal patterns but no spatial
correlation. One hundred of the events within a 2-day period
(5-min intervals and 576 time steps) were simulated for each of
the control and out-of-control conditions used in quantifying the
three performance measures. The emitter coefficientCwas assumed

Fig. 1. Four potential final decision flows in the proposed hybrid method for pipe burst detection.

Fig. 2. Austin network and pipe flowmeter locations.

© ASCE 06019008-3 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2019, 145(9): 06019008 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

M
ar

ri
ot

t L
ib

-U
ni

v 
O

f 
U

T
 o

n 
06

/2
7/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



to follow a uniform distribution over the range of 1–50, which
resulted in burst magnitudes of 0.1%–3.3% of the mean total system
demand.

Data from one to five meters (Fig. 2) were generated to inves-
tigate the impact of the number of meters on detectability. Then, the
data were sampled at five different sampling intervals (dt ¼ 5, 10,
15, 30, and 60 min) to examine the sampling frequency’s impact on
detectability. A burst that was not detected within 48 h was as-
sumed to be a nondetected burst; only one burst existed within each
48 h. For more details on the study network, meter locations, and
assumptions, refer to Jung et al. (2015).

Application Results

Parameter Estimation of the Modified WECO and
CUSUM Methods

First, the best value for the parameter c of the modified WECO
method was identified through a sensitivity analysis, in which the
DP, RF, and ADT were calculated with c ¼ 0.8, 1.0, 1.2, 1.4, and
1.6 at the five different sampling frequencies. Fig. 3 and Table 1
include part of the sensitivity analysis results. The modified WECO
method with c ¼ 1.0 was equivalent to the original method. The
best value had the highest DP with the RF constrained to 0% (no
false alarms). ADTwas also computed as a reference for selection if

the single best parameter could not be determined based on DP and
RF. Taking longer to detect a burst pipe was preferred to failing to
detect the burst pipe at all.

Fig. 3 shows the DP and RF of the modified WECO method
with different c values [Figs. 3(a and b) for c ¼ 0.8; Figs. 3(c
and d) for c ¼ 1.0; and Figs. 3(e and f) for c ¼ 1.2]. Overall,
DP and RF were confirmed to decrease with increasing c. In other
words, as the tolerance for the warning and control limits increased,
the sensitivity of the modifiedWECOmethod to burst pipes and the
risk of false alarms decreased. DP and RF were also confirmed to
increase with the amount of data as the (1) data sampling frequency
and (2) number of meters were increased (Fig. 3). Using the param-
eter values of 1.4 and 1.6 resulted in no false alarm but lower DP
than the case of c ¼ 1.2. Overall, ADT was longest when c ¼ 1.0
and shortest when c ¼ 1.2 (Table 1).

Fig. 3. (a, c, and e) Detection probability and (b, d, and f) false alarm rate of the modified WECO method with different c values: (a and b) c ¼ 0.8;
(c and d) c ¼ 1.0 (the original WECO method); and (e and f) c ¼ 1.2.

Table 1. ADT (h) of the modified WECO method with different c values

Meters c ¼ 0.8 c ¼ 1.0 c ¼ 1.2

1 9.4 10.5 6.9
1, 2 8.5 9.1 5.3
1, 2, 3 8.4 8.7 6.4
1, 2, 3, 4 6.1 8.2 6.2
1, 2, 3, 4, 5 4.8 8.0 6.0

Note: Data were sampled every 10 min.

© ASCE 06019008-4 J. Water Resour. Plann. Manage.
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Therefore, the best value for the control parameter c of the
modified WECO method was determined to be 1.2, which pro-
duced DP = 41%–67% and no false alarm when data from one to
five meters were used in 5-min intervals [Figs. 3(e and f)]. The
detection effectiveness of the original method was significantly
improved by incorporating the user-defined control parameter and
fine-tuning the warning and control limits to fit the specific network
of interest (RF was 8.2%–11% with the original WECO method
(c ¼ 1.0) given the same data set [Fig. 3(d)]).

For the parameter estimation of the CUSUM method, the values
for the parameters K and H were discretized within the ranges of
0.05–0.1 and 35–45. The three detectability measures DP, RF, and
ADT were then quantified for different combinations of the two
parameters. The best parameter set was selected as K ¼ 0.1 and
H ¼ 45, which resulted in DP ¼ 72% and RF ¼ 0%–1% when
one to five meters’ data were used at 5-min intervals. Pipe flow-
meters installed in a local area detected the subset of the burst event
detected by Meter 1 on a transmission line (Fig. 1). ADT decreased
from 7.9 to 6.4 h as the number of meters was increased (Table 2).

The detection rapidity was significantly degraded for the
CUSUM method as the data sampling frequency was decreased
from 5 to 60 min. The degradation was more severe than for the
modified WECO method (Table 2). For example, ADT was 23 h
when data of five meters with a sampling frequency of 60 min were
used, which is a 262% increase compared to the case with a 5-min
sampling interval (Table 2).

The preceding results indicated that the modifiedWECOmethod
provides an advantage in detection efficiency (i.e., short ADT),

whereas the CUSUM method provides high detection effective-
ness (i.e., higher DP and equivalent RF compared to WECO). The
low DP and long ADT are disadvantages of the former and the
latter method, respectively, and can be supplemented by the other
method.

Comparison between the Hybrid Method and Two
Individual Methods

The speculations presented in the “Methodology” section were
evaluated. Tables 3 and 4 present the DP and ADT of the CUSUM
and hybrid methods for the five data sampling intervals. CUSUM
was compared to the proposed hybrid method because it outper-
formed the modified WECO method with respect to DP and RF.
The hybrid method provided a higher DP than the CUSUMmethod
(Table 3). The percentage difference in DP between the two meth-
ods increased with an increasing number of meters and decreasing
data sampling frequency reductions. The RF values of the hybrid
and CUSUM methods were equal (0%–1%).

The hybrid method detected 28 of the smallest 48 burst events,
all with the CUSUM method component (when data from a single
pipe flowmeter at 5-min intervals was used). The burst magnitude
of these events was less than 1.6% of the mean total system de-
mand. On the other hand, the modified WECO method component
of the hybrid method detected 77% of the burst events with a burst
magnitude greater than 2.5% of the mean total system demand.
This confirmed that Speculation 1 is true: The two SPC methods
detect different sets of burst events, which increases the DP of the
hybrid method.

Speculation 2 was also confirmed to be true. The hybrid method
demonstrated a significantly reduced ADT because it incorporated
the modified WECO method, which detects medium to large bursts
promptly (Table 4). The percentage difference in ADT between the
CUSUM and hybrid methods increased as the number of meters
increased and the data sampling frequency decreased. In particular,
using the proposed hybrid method decreased ADT to an acceptable
level (9 h) compared to the CUSUM method when data from five
pipe flowmeters were available every 15 min (Table 4).

The preceding results proved that a simple coupling of individ-
ual SPC methods with different detection characteristics can sig-
nificantly improve pipe burst detectability. The prerequisite for

Table 2.ADT (h) of the two SPCmethods with sampling intervals of 5 and
60 min

Meters

Modified WECO
(c ¼ 1.2)

CUSUM
(K ¼ 0.1, H ¼ 45)

5 min 60 min 5 min 60 min

1 5.8 12.5 7.9 28.2
1, 2 5.7 9.4 7.1 24.2
1, 2, 3 6.1 9.3 6.7 24.2
1, 2, 3, 4 5.9 9.2 6.7 24.2
1, 2, 3, 4, 5 5.6 8.4 6.4 23.0

Table 4. ADT (h) of the hybrid and CUSUM methods for different data sampling intervals

Meters

CUSUM Hybrid

5 min 10 min 15 min 30 min 60 min 5 min 10 min 15 min 30 min 60 min

1 8 13 15 22 28 8 12 14 19 20
1, 2 7 11 14 19 24 7 10 12 16 16
1, 2, 3 7 11 13 19 24 6 10 11 15 15
1, 2, 3, 4 7 11 13 19 24 6 9 10 14 14
1, 2, 3, 4, 5 6 10 12 18 23 5 8 9 13 13

Table 3. DP (%) of the hybrid and CUSUM methods for different data sampling intervals

Meters

CUSUM Hybrid

5 min 10 min 15 min 30 min 60 min 5 min 10 min 15 min 30 min 60 min

1 72 69 62 52 37 72 69 62 52 37
1, 2 72 69 64 56 41 72 69 64 56 42
1, 2, 3 72 70 64 56 41 73 71 66 59 46
1, 2, 3, 4 72 70 64 56 41 81 79 74 66 53
1, 2, 3, 4, 5 72 70 65 58 44 81 79 75 68 56
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the hybrid method’s superior performance is a proper parameter
estimation for the individual methods in which DP is maximized
while RF is minimized, rather than the implementation of a sophis-
ticated decision support algorithm to derive the final decision when
the two individual methods disagree.

Summary and Conclusions

A hybrid SPC method was proposed that combined the modified
WECO method and CUSUM method. First, the original WECO
method was modified to incorporate a user-defined parameter c that
manipulated the tolerance for warning and control limits to fit the
specific network of interest. Then, the best parameter set was iden-
tified for each of the two individual methods so that coupling them
should not increase the false alarms of the proposed hybrid method.
DP, RF, and ADTof the three detection methods were compared by
using common data sets generated from an EPANET hydraulic
model of the Austin network: (1) a long time series of pipe flow
rates was generated at five meter locations at 5-min intervals with
and without pipe bursts, and (2) data from one to five meters were
provided at five different data sampling intervals (dt ¼ 5, 10, 15,
30, and 60 min).

A sensitivity analysis confirmed that, as the tolerance for the
warning and control limits increased, the sensitivity of the modified
WECO method to pipe bursts and the risk of false alarms decreased
in the Austin network. DP and RF increased with the data sampling
frequency and number of meters. In the Austin network, the best
value of c ¼ 1.2 was identified, which removed the risk of false
alarms with the modified WECO method. While the CUSUM
method with the best parameter set of K ¼ 0.1 and H ¼ 45 had
a higher overall detection effectiveness than the modified WECO
method, it also had a longer ADT (less detection rapidity).

Finally, the proposed hybrid method was compared to the
CUSUM method (the best of the two individual methods) with re-
spect to three detectability measures in the Austin network. The
hybrid method had an equivalent RF to the CUSUM method
and a higher DP overall. Within the hybrid method, small bursts
were detected with the CUSUM method component, which consid-
ered large amounts of past data, while relatively big bursts were
rapidly identified with the modified WECO method component.
This allowed the proposed hybrid method to demonstrate high
detection effectiveness and efficiency compared to the CUSUM
method in the network considered. A simple coupling of individual
SPC methods with different detection characteristics was verified to
significantly improve pipe burst detectability when using syntheti-
cally generated burst data.

Water utilities can benefit from the reduction in the number of
undetected burst events and the time taken for detection, all of
which help reduce overall system costs and improve water distri-
bution services. Prompt detection of burst pipes decreases the du-
ration of service interruptions from the low pressure caused by
water loss and avoids the risk of collateral damage (e.g., sinkholes),
which also has great social cost.

This study has several limitations that future research must
address. First, the proposed hybrid method and comparison should
be validated with real burst data. When applying the proposed
method to detect real-life pipe bursts, missing data can occur
that can be replaced with the historical mean or data on another
location with similar characteristics. A future study could develop
a missing data imputation method that fits SPC and the proposed
hybrid method. In addition, the optimal value of parameter c
could be compared across networks with different layouts and
characteristics.
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