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Abstract: A multiobjective optimal meter placement (MOMP) model is proposed for water distribution system (WDS) pipe burst detection
to (1) minimize the normalized total meter cost, (2) maximize the detection probability, (3) minimize the rate of false alarms, and (4) maximize
the meter network’s mechanical reliability. The mechanical reliability is a meter network’s ability to continuously provide informative data/
measurement even under measurement failures originating from either missing measurements for time steps or meter malfunction. A novel
method for quantifying mechanical reliability is developed based on the simulation of a single-meter failure. In addition to meter locations, the
optimal ratio between the pressure and pipe flow meters was identified for a predefined number of meters. The proposed MOMP model was
demonstrated on two networks from the literature with different configurations, characteristics, and numbers of components. The results
suggest that the proposed MOMP model should be used to determine the optimal meter location and best set of meters for high detectability
and mechanical reliability of a specific network of interest. DOI: 10.1061/(ASCE)WR.1943-5452.0000953. © 2018 American Society of
Civil Engineers.

Introduction

Various system variables, such as the pressure, pipe flow, and cus-
tomer demand, are measured by meters installed in a water distri-
bution system (WDS). Useful information for system operation
and management is extracted from the data collected at meters and
sent to a supervisory control and data acquisition (SCADA) system.
In order to maximize the information gained from the meter data,
effective informatics techniques need to be used (Abbott 1999), and
meters of a suitable type should be installed at optimal locations
(Bragalli et al. 2016; Jung and Kim 2017). This study focuses on
the latter consideration.

During the last two decades, optimal meter placement (OMP)
has been one of the most popular problems in the WDS research
domain and has been tackled for different purposes: (1) state esti-
mation (Kang and Lansey 2010; Bragalli et al. 2016; Jung and
Kim 2017), (2) leakage/pipe burst detection and identification
(Pérez et al. 2009; Farley et al. 2010; Huang et al. 2012; Zheng and
Yuan 2012; Hagos et al. 2016; Steffelbauer and Fuchs-Hanusch
2016; Sela Perelman et al. 2016), (3) contamination detection
(e.g., Sankary and Ostfeld 2017), and (4) model calibration
(Kapelan et al. 2003, 2005; Simone et al. 2016). Different types
of meters have been confirmed to be more efficient than others for
different problems. Generally, most OMP approaches to leakage/
pipe burst detection have been based on pressure meter data and
a sensitivity matrix (e.g., Jacobian matrix) (e.g., Farley et al. 2010),
whereas those for demand estimation (DE) use pipe flow data
(e.g., Jung and Kim 2017).

This study is the first to introduce meter network reliability
(i.e., sampling network reliability) to the WDS OMP problem.
A meter network is defined as a group of meters spatially distrib-
uted throughout a WDS. Meter network reliability is defined as a
meter network’s ability to provide useful data (e.g., pressure, pipe
flow, and customer demand) for various WDS operational and man-
agement purposes (e.g., leakage/pipe burst detection) with accept-
able accuracy and precision and without missing data. Therefore,
meter network reliability consists of (1) performance reliability, and
(2) mechanical reliability. The former refers to a meter network’s
capability to reliably observe the system variables as close as pos-
sible to their true values, whereas the latter is defined as the ability
to continuously provide informative data/measurements even in
the event of measurement failures originating from missing time-
step measurements or meter malfunction. Performance reliability is
often estimated with and affected by data analysis methods used
with a meter network. For example, a coupled model consisting of
a meter network and demand forecasting submodule with high ac-
curacy [e.g., root-mean square error (RMSE)] and low uncertainty
(e.g., narrow confidence interval) has high performance reliability.
Mechanical reliability is high if informative data can still be pro-
vided even if one of the meters malfunctions (i.e., no data are sent
from the failed meter).

Many studies have been devoted to considering the concept
of performance reliability for the WDS OMP problem. Kang and
Lansey (2010) proposed an OMP methodology for WDS DE with
three objectives: minimize nodal DE uncertainty, minimize nodal
pressure prediction uncertainty, and minimize the absolute error of
the DE. Jung and Kim (2017) introduced an optimal node grouping
and meter placement method for WDS DE to minimize the RMSE
of the DE. The number of meters was defined before optimization
in the aforementioned two studies. Securing a high level for this
class of reliability fits well to the original goal of the OMP problem.

However, to the best of the authors’ knowledge, no study has
incorporated the mechanical reliability of a meter network into
the WDS OMP problem. Most studies solved each OMP problem
under the assumption that all meters successfully function. How-
ever, meter data are often not received by the SCADA in reality
because of mechanical failure of a meter or communication system
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issues. This is becoming common for hyperconnected systems vul-
nerable to cyberattacks (Taormina and Galelli 2017; Taormina et al.
2017). High performance reliability cannot be achieved without an
acceptable level of mechanical reliability. Therefore, the mechani-
cal reliability of a meter network should be considered for an OMP
problem.

In a real network, a set of pipe flow and pressure meters is lo-
cated at critical points. For example, pipe flow meters are generally
positioned at the inlet pipe of each district metering area, and pres-
sure meters are around pressure-reducing valve stations or pump
stations. However, few OMP studies have considered different types
of meters (e.g., pressure and pipe flow meters) simultaneously.
Sankary and Ostfeld (2017) proposed a mobile senor placement
approach for contamination event detection to identify the tradeoff
relationships among the population affected prior to detection, de-
tection time, and meter cost. They considered two types of sensors:
fixed and mobile. They used normalized costs for the two sensors to
calculate the total system metering cost.

In the present study, an OMP methodology was developed for
WDS pipe burst detection that considers mechanical reliability. The
proposed method is a multiobjective OMP (MOMP) model that
minimizes the total meter cost, maximizes detectability [i.e., max-
imizes detection probability (DP) and minimizes the rate of false
alarms (RF)], and maximizes the meter network’s mechanical reli-
ability. A novel mechanical reliability quantification method was
developed based on the simulation of a single-meter failure. Either
the pipe flow or pressure meter can be selected and located at a
meter location with a predefined total number of meters (nmeter).
The total meter cost is computed based on the normalized cost of
the two meters. The proposed method was demonstrated on the
Austin (Brion and Mays Mays 1991) and Balerma (Reca and
Martínez 2006) networks with different configurations, character-
istics, and numbers of components.

Methodology

In this section, the detectability measures used in this study are de-
scribed first, followed by the proposed meter mechanical reliability
quantification method. Finally, the normalization method for the
meter cost and an overview and details of the proposed MOMP
model are presented.

Detectability Measures

WDS pipe burst detectability consists of detection effectiveness
and efficiency. The detection effectiveness refers to how well burst
events are detected and false alarms are avoided with natural ran-
dom patterns (Medhanie et al. 2016). The former is measured by
DP, and the latter is measured by RF. DP is the ratio of burst events
that are detected (ndetbevent) to the total number of burst events
(ntotbevent)

DP ¼ ndetevent
ntotevent

ð1Þ

RF is the proportion of natural random events in which a false
alarm is issued to the total number of natural events. DP is a Type II
error (i.e., false negative) index, whereas RF is a Type I error
(i.e., false positive) index. Burst events are pipe bursts that occur
at different locations and initiation times with different magnitudes.
Pressure and pipe flow measurements obtained under the failure
condition are provided to a detection method to calculate DP. In
this study, a burst that was not detected within 48 h of its initiation
was assumed to be a nondetected event. For the calculation of RF,

pipe bursts are not considered, only the randomness in demand.
A natural random event is a normal random system condition in
a 48-h period during which measurements are provided to calculate
RF. For example, if a certain detection method issues an alarm for
80 events out of a total 100 burst events, DP is calculated to be
80%. On the other hand, if a method issues an alarm for two natural
random events out of a total 100 natural events for which no alarm
should be issued, the RF is 2%.

Therefore, a meter network with a high DP and low RF is fa-
vored with respect to network reliability and robustness. Hagos
et al. (2016) proposed a binary integer programming model to op-
timize the meter location for WDS pipe burst detection by maxi-
mizing DP given a predefined level of RF as a constraint. For more
details on DP and RF, please refer to the studies by Jung et al.
(2015) and Jung and Lansey (2015).

Detection efficiency refers to the rapidity of detection. The aver-
age detection time (ADT) is defined as the averaged value of the
time for detection and can be considered in an OMP problem as an
additional detection efficiency measure to the aforementioned two
detection effectiveness measures. If DP and RF are equal for two
networks, the one with a shorter ADT is preferred. Increasing DP
indirectly decreases ADT because the detection time for a nonde-
tected event is infinite (∞). Therefore, the two effectiveness mea-
sures of DP and RF are optimized by the proposed MOMP model.

Mechanical Reliability of a Meter Network

In this study, a meter network’s mechanical reliability was defined
as the network’s ability to provide useful information for a WDS
pipe burst detection even in the event of meter failure. Therefore,
the reliability and robustness of a meter network are quantified
based on a meter failure simulation. Because the simultaneous fail-
ure of multiple meters is of low likelihood, only single-meter fail-
ures were considered to assess the mechanical reliability. In this
study, the coefficient of variation (CV) of DP in the event of meter
failure was used as a mechanical reliability indicator.

Fig. 1 shows a flowchart for calculating the mechanical reli-
ability index. For a given meter set with a total number of meters
N (i.e., a set of integer values indicating N meter locations), one of

Fig. 1. Procedure to calculate the mechanical reliability of a meter
network.
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the meters (ith meter, i ¼ 1; : : : ;N) is assumed to not send any
data to SCADA. This represents a meter failure originating from
meter malfunction and communication system failure. Thus, the
ith meter’s DP (DPi) is set to zero. The partially impaired meter
network’s DP in the event of failure of the ith meter (DPf;i) is then
computed, in which the detection of each burst is determined based
on an individual meter’s detection of the burst in the meter network
excluding the failed meter. The failed/impaired meter is then as-
sumed to return to its normal condition, and another one fails; the
preceding calculations are repeated until the failure of all meters
has been evaluated (i.e., DPf;i is calculated for i ¼ 1; : : : ;N).

The CV of DPf;i (CVMR) is then calculated

CVMR ¼ σðDPf;iÞ
avgðDPf;iÞ

; i ¼ 1; : : : ;N ð2Þ

where avgðDPf;iÞ and σðDPf;iÞ = average and standard deviation,
respectively, ofDPf;i (i ¼ 1; : : : ;N). A high mechanical reliability
is indicated by a low CVMR. Therefore, a meter network with a
low CVMR is preferred because this indicates a high expected DP
in the event of a single-meter failure [denominator in Eq. (2)] and
low variation in the detection performance in the event of failure
[numerator in Eq. (2)].

Similar processes based on single-meter failures can be imple-
mented to quantify the mechanical reliability of a meter network
for other purposes. For example, an estimation accuracy indicator
(e.g., RMSE) can be used instead of DP to assess the mechanical
reliability for WDS demand estimation. In this study, each meter
was assumed to have the same failure probability with identical
properties (e.g., meter age, battery, and maintenance conditions),
which should hold true especially for small- and medium-size net-
works. A Monte Carlo simulation can be used for a meter network
with different meter conditions (e.g., different types of meters).

Meter Network Cost

Generally, a pipe flow meter is more expensive to install than a
pressure meter because of the high installation cost. The ground
is trenched and excavated; then, part of the pipe wall should be
cut off. With the addition of backfill and compaction, such ground-
work generates high costs and, in some cases, social costs due to
utility interference and traffic control. On the other hand, a pressure
meter (e.g., piezometer) can be placed on a hydrant without the
need for such groundwork.

Other groups have confirmed that pressure data are more
informative for pipe burst detection than pipe flow data (Jung
et al. 2015; Hagos et al. 2016). Although most previous OMP stud-
ies considered pressure meters because of this meter type’s avail-
ability and easy implementation (Farley et al. 2010), Hagos et al.
(2016) identified a potential benefit of considering not only pres-
sure meters but also pipe flow meters; they found that (1) pressure
meters detect common burst events, and pipe flow meters detect
different unique events; and (2) DP of a pressure meter is higher
than that of a pipe flow meter. Therefore, the highest detectability
can be achieved when utilizing the heterogeneity of these two
meters, such as using a few pressure meters with several pipe flow
meters to detect the burst events missed by the pressure meter set.

In this study, either a pipe flow meter or pressure meter can be
selected for a meter location. Given the predefined nmeter, a nor-
malized total meter cost (TotalMeterCost) is computed and mini-
mized by the proposed MOMP model. The cost of a pressure meter
was assumed to be a unit of 1, whereas that of a pipe flow meter was
defined by the multiplier CostFactor. For example, CostFactor ¼
2 if the cost of a pipe flow meter is twice that of a pressure meter.

Then, TotalMeterCost ¼ 8 for five meters comprising two pres-
sure meters and three pipe flow meters with CostFactor ¼ 2.
Various proportions of the two meters are to be identified in the
Pareto optimal solutions of different objective function values
(i.e., DP, RF, and CVMR).

Multiobjective Optimal Meter Placement Model

The proposed MOMP model has four objectives: minimize
TotalMeterCost (F1), maximize DP (F2), and minimize RF and
CVMR (F3 and F4, respectively)

MinimizeF1 ¼ TotalMeterCost ð3Þ

MaximizeF2 ¼ DP ð4Þ

MinimizeF3 ¼ RF ð5Þ

MinimizeF4 ¼ CVMR ð6Þ

Although a tradeoff relationship between the first and second
objectives has been identified in previous studies, such as in a con-
strained single-objective model (e.g., Kapelan et al. 2005; Hagos
et al. 2016; Simone et al. 2016), relationships between the fourth
and other three objectives and between the second and third objec-
tives have not previously been investigated.

Fig. 2 shows a flowchart of the offline process required to pro-
vide the input data of the proposed MOMP model as well as the
model’s structure and submodules. The proposed MOMP model
identifies the optimal meter locations for pressure and/or pipe flow
meters by using the nondominated sorting genetic algorithm-II
(NSGA-II) (Deb et al. 2002) with simulated binary crossover
(SBX) (Deb and Agrawal 1994) and polynomial mutation (PM)
(Deb and Goyal 1996).

New solutions in the form of a set of integer values indicating
meter locations are generated in each generation, and their fitness
with respect to the four objectives (i.e., TotalMeterCost, DP, RF,
and CVMR) is quantified (Fig. 2). DP and RF of a solution are
quantified based on the detection and false-alarm matrix, respec-
tively, obtained from the offline process, which applies a statistical
process control (SPC) method to control and out-of-control data
generated from an EPANET (Rossman 2000) hydraulic model
of a network of interest. More details are in the following sections.
CVMR is computed with the method described in the “Mechanical

Fig. 2. Schematic diagram of the proposed MOMP model.
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Reliability of a Meter Network” section, whereas TotalMeterCost
is calculated based on the normalized costs of the pressure and pipe
flow meters (CostFactor is defined before optimization) (Fig. 2).
SBX and PM are performed stochastically for a pair of solutions
selected from the population. The aforementioned NSGA-II pro-
cess is repeated until a satisfactory Pareto-optimal meter location
set is identified. Each module/component of the proposed MOMP
model is described in detail in the following sections.

Western Electric Company Rules

Although various hydroinformatic techniques have been applied
for WDS pipe burst detection, such as artificial neural networks
(Mounce and Machell 2006), state estimation (Ye and Fenner 2013;
Jung et al. 2015), and time-series modeling (Quevedo et al. 2010),
the SPC method has become one of the most popular techniques
used for WDS pipe burst detection during the last decade (Misiunas
et al. 2006; Romano et al. 2010; Palau et al. 2011; Jung et al. 2015).
A more detailed review of the aforementioned studies has been
provided by Wu and Liu (2017). Some of the most recent studies
have put tremendous effort into maximizing the detection effective-
ness by developing an advanced hydroinformatic technique that
combines pattern matching and binary neural network techniques
(Mounce et al. 2014), a multiphase detection method based on a
clustering algorithm (Wu et al. 2016), and a practical approach using
a renewed concept of the so-called outlier region (Loureiro et al.
2016).

The SPC method applies statistical theory to the process
variables (e.g., pipe flow rates and nodal pressures) to identify ab-
normal patterns that may be caused by bursts (Jung et al. 2015).
The basis of the SPC method is the Shewhart control chart, which
consists of the mean values (centerline) of the process variables and
warming limits (WLs) and control threshold limits (CLs). The latter
two are multiples of the standard deviation (σ) on each side of the
centerline.

In this study, Western Electric Company (WECO) rules (WECO
1958) were used for a univariate SPC method. These are a set of
decision rules for identifying nonrandom patterns in measurements.
Several studies have proven the applicability and effectiveness of
this method at detecting WDS leakages/pipe bursts (Romano et al.
2010; Jung et al. 2015; Hagos et al. 2016). The WECO rules raise
an alarm if the measurements satisfy any of the following four
criteria:
• Rule 1: Any single measurement is beyond the �4σ CLs.
• Rule 2: Two of three consecutive measurements are beyond

�3σ WLs.
• Rule 3: Four of five consecutive measurements are beyond

�2σ WLs.
• Rule 4: Eight consecutive measurements are beyond �1σ WLs.

Rules 2–4 should be applied to one side of the centerline at a
time. Therefore, a measurement followed by a series of measure-
ments on the other side of the centerline outside the WLs does not
trigger an alarm according to Rules 2–4.

Control and Out-of-Control Data Generation

Two sets of pipe flow and pressure data can be generated by using
an EPANET hydraulic model of the study network: control and out-
of-control data. The former is used to develop the Shewhart con-
trol chart for each pipe and node and to calculate RF, whereas the
latter is used to compute DP. Control data are generated by consid-
ering randomness in nodal demands only, whereas out-of-control
data are produced by considering both random demands and pipe
bursts.

Several factors of pipe burst events affect pipe burst detection.
A big burst is more likely to be detected than a small one. Hagos
et al. (2016) found that most bursts are detected at night and in the
early morning. A burst event that occurs near a meter retains clear
signals of an anomaly. In order to generate pipe burst events of
various characteristics, random pipe bursts of different burst mag-
nitudes, initiation times, and locations can be generated and simu-
lated by using an emitter in EPANET. Uniform random sampling is
performed to define the three factors of the burst events. The burst
flow (BurstFlow) is represented as a power function of the nodal
pressure

BurstFlow ¼ Cpα ð7Þ
where C = burst discharge coefficient; p = nodal pressure; and α =
power function’s exponent. Following the suggestion of Lambert
(2001) and Fuchs-Hanusch et al. (2016), α was set to 0.5 based
on the assumption of a metal pipe. However, α ¼ 1.0 should be
used in the absence of knowledge of the pipe materials. Random
burst magnitudes are defined by randomly sampling C in a prede-
fined range, and random integer values are chosen for the burst ini-
tiation time and location identifier.

Detection and False-Alarm Matrix

As shown in Fig. 2, DP, RF, and CVMR of new solutions generated
through selection, SBX, and PM over generations are calculated
based on the detection and false-alarm matrices. Their binary ele-
ments indicate an alarm for abnormal or natural random events.
These are produced by applying the WECO rules to the generated
control and out-of-control data. Populating the two matrices is an
offline process performed outside the proposed MOMP model.
Therefore, the two matrices are the inputs to the proposed model
together with CostFactor and nmeter (Fig. 2).

To populate the detection matrix, the WECO rules are applied to
each meter’s data one at a time. Fig. 3 shows the multiplication of
the example detection matrix D and meter configuration matrix C,
both for pressure meters. The rows ofD are burst events (total num-
ber of events is ne), and the columns are potential meter locations
(total number of nodes is nn). This makes D a ne × nn matrix. For
example, the first burst event (Event 1) is detected by the pressure
meter located at Node 1, but it is not detected by that at Node 2
(Fig. 3). The false-alarm matrix F is constructed in a similar manner
but has a value of 1 if a false alarm is issued for a natural random

Fig. 3. Multiplication of the detection matrix D and configuration matrix C to calculate the total DP of the meter network.
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event and 0 otherwise. The meter configuration matrix C (nn × 1
and np × 1 for pressure and pipe flow meters, respectively) is an-
other binary matrix that contains binary values indicating meter
installation at a location.

Therefore, DP of a given meter set (meterset) is calculated as
follows:

DPmeterset ¼
X

m∈meterset

Xne
n¼1

ðDn;m × CmÞ ð8Þ

in which Dn;m [element of D at (n, m)] = 1 if the mth meter detects
the nth burst event, and 0 otherwise; and Cm (mth element ofC) = 1
if a meter is installed at the mth location, and 0 otherwise.

Similarly, RF of meterset is computed as follows:

RFmeterset ¼
X

m∈meterset

Xne
n¼1

ðFn;m × CmÞ ð9Þ

in which Fn;m [element of F at ðn;mÞ� ¼ 1 if the mth meter issues
an false alarm for the nth natural random event, and 0 otherwise.

NSGA-II with SBX and PM

NSGA-II is a multiobjective version of the genetic algorithm and
considers two unique features for the selection process: nondomi-
nated ranking and crowding distance. The former feature tries to
ensure that a solution superior to others with respect to the consid-
ered objectives survives to the next generation, whereas the latter
seeks diversity of the Pareto optimal solutions. Deb et al. (2002)
offered more details about the two selection methods. The original
version of NSGA-II uses general crossover and mutation operators
(Deb et al. 2002).

A metaheuristic optimization algorithm with well-balanced
intensification and diversification yields high-quality optimal solu-
tions (Kim 2016). That is, the algorithm should have both the
capacity to search a broad area of solution space but also the ability
to seek promising regions. In this study, SBX and PM were used to
improve the search performance of NSGA-II. They stochastically
control the deviation of children solutions from parent solutions by
crossover and mutation distribution indices (CDI and MDI, respec-
tively) which are the shape parameters for a polynomial probability
distribution.

Given the CDI value, the SBX operator generates two children
solutions x1c and x2c from the two parent solutions x1p and x2p as
follows:

x1c ¼ 0.5½ð1þ βÞx1p þ ð1 − βÞx2p� ð10Þ

x2c ¼ 0.5½ð1 − βÞx1p þ ð1þ βÞx2p� ð11Þ

where

β ¼

8><
>:

ð2uÞ1=ðCDIþ1Þ if u ≤ 0.5�
1

2ð1 − uÞ
�

1=ðCDIþ1Þ
otherwise

where u = randomly sampled real number; and u ∈ ð0; 1Þ. Fig. 4
shows the probability distributions of [εðβÞ] for two different CDI
values: CDI ¼ 2.0 and 20. Although the shape of a distribution is
commonly symmetric around a single sharp peak at β ¼ 1 (parent
solution’s location), the slopes of the rising and falling limbs and
the peak/highest value are different. Therefore, the probability of
producing children solutions distant from the parent solutions is
higher with CDI ¼ 2.0 than with CDI ¼ 20. More details on SBX

and PM (e.g., PM formulations) have been given by Jung et al.
(2017).

Study Network

The proposed MOMP model was applied to the modified Austin
network (Jung and Lansey 2015; Hagos et al. 2016; Jung et al.
2016) and Balerma network (Reca and Martínez 2006). As shown
in Fig. 5(a), the Austin network is an urban drinking-water distri-
bution network and consists of 126 nodes and 90 pipes (nn ¼ 126

and np ¼ 90) supplied by a single reservoir and one pumping sta-
tion, where four identical pumping units maintain a constant total
head of water. The total system demand of the network is 726 L=s.
A transmission line of 762-, 1,219-, and 1,524-mm diameter pipes
(30-, 48-, and 60-in., respectively) is laid through the middle of the
network to deliver subarea demands from the single source. The
Austin network is loop-dominated with few local branched sections
(e.g., at the northeast and south ends). The biggest pipe is the
1,829-mm diameter (72-in.) source pipe, whereas the smallest pipe
size is 152 mm (6 in.).

Fig. 5(b) shows the Balerma network, which is an irrigation net-
work supplied by four reservoirs and composed of 443 nodes and
454 pipes (nn ¼ 443 and np ¼ 454) (Reca and Martínez 2006).
The total system demand is 1,790 L=s, which is approximately
2.5 times that of the Austin network. A least-cost design was used
for the Balerma network. Main pipelines over 200-mm in diameter
and stemming from each reservoir are connected throughout the
network to make a looped network. However, the network configu-
ration can be visualized as a branched system because of the many
pendant lines, each with two to four pipes, tapped into the main
pipes [Fig. 5(b)]. Pipe sizes range from 113 to 582 mm for the
Balerma network. Although approximately 95% of the pipes are
smaller than 400 mm in diameter, 17.8% pipes are greater than
600 mm. The average pipe size is 424 mm in the Austin network
and 208 mm in the Balerma network.

Three time-series data sets were generated for the offline analy-
sis to populate the detection and false-alarm matrices (Fig. 2). First,
a normal 2,000-day time series of the nodal pressures and pipe flow
rates at a 5-min time step was generated by using the networks’
hydraulic model to construct the Shewhart control chart of each
variable. Gaussian random time series of the nodal demands were
generated by assuming no spatial correlation but a strong temporal
correlation because of the underlying diurnal pattern and then input
to the model. Each nodal demand was assumed to have a CVof 0.1.

A control data set and out-of-control data set were used to con-
struct the false-alarm and detection matrices, respectively. In total,
1,000 burst events and 1,000 natural random events were generated.

Fig. 4. Probability distributions of the simulated binary crossover with
two crossover distribution index values.
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The burst discharge coefficient Cs was sampled over the range of
1–100 in both networks.

NSGA-II with SBX and PM started its search with randomly
generated solutions, i.e., a string of random integer values sampled
over the range of 1 to nnþ np, which indicated the locations of the
nodal pressure and pipe flow meters. Only a single meter could be
installed per node/pipe. Several parameters of NSGA-II with SBX
and PM were determined from a sensitivity analysis to find a final
Pareto solution of high quality; this is not presented in this paper. A
CDI of 20 and MDI of 20 were used for SBX and PM, respectively,
of NSGA-II. Therefore, children solutions close to parent solutions
were produced more frequently than parent-resembling solutions
[e.g., when CDI and MDI were both 2.0 (Fig. 4)]. The final Pareto
solutions were determined by running NSGA-II with SBX and
PM for a population of 200 evolving over 20,000 generations. The
crossover and mutation rates were 0.9 and 0.1, respectively.

Application Results

Pareto-Optimal Meter Sets Obtained Considering Three
Objectives (CostFactor � 1)

First, the proposed MOMP model was applied to the two study
networks under the assumption that CostFactor ¼ 1 (i.e., the two
types of meters cost the same). Therefore, the model’s objectives
[i.e., four objectives given in Eqs. (3)–(6)] were relaxed to maxi-
mize DP [Eq. (4)], minimize RF [Eq. (5)], and minimize CVMR
[Eq. (6)]. Based on preliminary sensitivity analyses for finding an
adequate number of meters, it was assumed that a total of seven
meters was available for both networks. Fig. 6 shows the projec-
tions of the final Pareto solutions for the Austin network onto three-
dimensional [Fig. 6(a)] and two-dimensional plots [Figs. 6(b–d)].
Fig. 6(a) represents the ratio of pipe flow meters as a gray color
for the Austin network. Fig. 7 shows the same results but for the
Balerma network.

Each axis is scaled so that the utopian point of (DP, RF, CVMR)
equal to (1, 0, 0) is located at the frontmost corner of the three-
dimensional plots in Figs. 6(a) and 7(a). Although the relative po-
sition of the Pareto solutions is not easy to visually identify in
Figs. 6(a) and 7(a), the two-dimensional plots of each pair of the

three objectives [e.g., Fig. 6(b) for DP and RF, Fig. 6(c) for DP and
CVMR, and Fig. 6(d) for RF and CVMR] provide easier interpre-
tation. The plot axes are in the same range for relative comparison
between the two study networks (Figs. 6 and 7). Nondominated
solutions with respect to two objectives were also identified in post-
optimization analysis and marked as asterisk points in the two-
dimensional plots [Figs. 6(b–d) and 7(b–d)]. These were referred
to when interpreting the relation between each pair of the three
objectives.

Regardless of network, a nonlinear relationship was confirmed
between DP and RF. DP can be increased by allowing more false
alarms [Figs. 6(b) and 7(b)]. For the Austin network, the water util-
ity manager would want to select the optimal meter location set
with DP ¼ 0.975, RF ¼ 0.08, and CVMR ¼ 0.02 (the asterisk sol-
ution indicated by an arrow in Fig. 6(b) is a practical solution
among the mathematical Pareto-optimal solutions) because there
are marginal DP increases with significant RF increases beyond
the solution [left side of Fig. 6(b)]. It was easier to detect pipe bursts
in the Balerma network than in the Austin network; the overall DP
was higher and RF was lower for the Balerma network with the
looped configuration [Fig. 5(b)] because anomalous events that oc-
cur at a location can affect hydraulics at other sites of the network
(Jung et al. 2015). This resulted in the final solution being posi-
tioned at the lower left corner of Fig. 7(b) for the Balerma network.

Fig. 8 shows the scatter plot of the pipe flow meter ratio and the
three objectives considered in this study for the Austin network. DP
tended to increase as more pipe flow meters were included in the
seven meters [Figs. 6(a) and 8(a)]. Especially, the filled shade of the
solution points indicating the pipe flow meter ratio changed along
the DP axis, as shown in Fig. 6(a). This is because pressure meters
detect common bursts, whereas pipe flow meters detect different
unique bursts (Hagos et al. 2016). That is, a common burst will be
detected by most pressure meters, whereas a unique burst will only
be detected by a certain pipe flow meter(s). Higher detectability
(i.e., higher DP and lower RF) can be obtained with the former than
the latter (Jung et al. 2015). Therefore, the best strategy for meter
location is to combine a few pressure meters and multiple pipe flow
meters so that the latter complements the former. Including more
pipe flow meters increased RF [Fig. 8(b)].

A similar relationship between the pipe flow ratio and three ob-
jectives was also obtained for the Balerma network but is not

(a) (b)

Fig. 5. Layouts of the two study networks: (a) Austin; and (b) Balerma.
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presented here. Although the final Pareto solutions for the Balerma
network were only divided into those without pipe flow meters and
those with a single pipe flow meter (pipe flow meter ratio of 0.143)
[Fig. 7(a)], up to five of the seven available meters (ratio of 0.714)
were pipe flow meters for the Austin network [Figs. 6(a) and 8].

A tradeoff relationship was confirmed between DP and
the meter network’s mechanical reliability [Figs. 6(c) and 7(c)],
whereas no significant relation was found between RF and the latter
[Figs. 6(d) and 7(d)]. For both networks, CVMR increased with DP.
The asterisk nondominated solutions for the Balerma network
had very high DP (i.e., 0.971–1.0) and CVMR ranging from 0 to
0.01, which resulted in the almost vertical frontal curve shown in
Fig. 7(c). The relationship seems to originate from the increased DP
for optimal meter sets with a high ratio of pipe flow meters. As
more pipe flow meters were included in a meter set, the variation
in the partially impaired meter network’s DPs increased [i.e., in-
creased σðDPf;iÞ in Eq. (2)], retaining the average DP [i.e., retaining
avgðDPf;iÞ in Eq. (2)]. This finally resulted in a high CVMR.

In contrast, a very high CVMR could be obtained with only pres-
sure meters. Some asterisk nondominated solutions had CVMR of
0, as shown in Figs. 6(c and d) and 7(c and d). For example, an
optimal meter set with DP of 0.88 and RF of 0.052 for the Austin
network had CVMR of 0, which is the highest mechanical reliability
level. The meter set only consisted of seven pressure meters; each
meter’s failure identically resulted in a total DP for the meter net-
work of 0.88 [i.e., the variance σðDPf;iÞ ¼ 0with double precision].

Individual meters had similar DPs of either 0.868, 0.87, or 0.871.
Therefore, only pressure meters should be included in a meter net-
work to assure high mechanical reliability.

Pareto-Optimal Meter Sets Obtained Considering Full
Four Objectives (CostFactor � 2)

Finally, the Pareto-optimal meter sets were identified when all four
objectives [Eqs. (3)–(6)] were considered and CostFactor ¼ 2.
These were projected in three-dimensional [e.g., Fig. 9(a) for
the Austin network] and two-dimensional plots [e.g., Fig. 9(b)],
similar to Figs. 6 and 7. Although the solution points are positioned
based on the three objective values of DP, RF, and CVMR in three-
dimensional space, TotalMeterCost is represented by the grayscale
filling the points, where lighter solutions are more expensive than
darker ones, as shown in Fig. 9(a).

TotalMeterCost of the Pareto solutions ranged from 7 to 12 for
the Austin network and from 8 to 9 for the Balerma network. This
indicated that maximums of five and two pipe flow meters (pipe
flow ratios of 0.714 and 0.143, respectively) were included in the
Austin and Balerma networks, respectively. The maximum number
of pipe flow meters included for each network was the same as that
of the solutions obtained from the three-objective optimization
[Figs. 6(a) and 7(a)].

Regardless of the network, the Pareto-optimal fitness land-
scape constructed based on the three objective values from the

R
F

0.850.90.951
DP

0

0.005

0.01

0.015

0.02

0.025

0 0.2 0.4 0.6 0.8 1
RF

DP

0

0.005

0.01

0.015

0.02

0.025

1
0

0.2

0.4

0.6

0.8

1

0.95 0.9 0.85

C
V

M
R

C
V

M
R

(a) (b) 

(c) (d) 

Fig. 6. Pareto-optimal solutions obtained from the proposed MOMP model with three objectives (maximize DP, minimize RF, and minimize CVMR)
for the Austin network given that seven meters are available: (a) three-dimensional plots of DP and RF; (b) two-dimensional plots of DP and RF;
(c) DP and CVMR; and (d) RF and CVMP. The solution points in (a) are filled with a grayscale representing each solution’s pipe flow meter ratio.
The asterisks in (b–d) are nondominated solutions with respect to the two objectives considered in each two-dimensional plot.
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four-objective optimization was similar to that drawn by the three-
objective optimization results [e.g., Figs. 6(a) and 9(a)]. For the
Austin network, TotalMeterCost increased along the axis of DP
[Fig. 9(a)], which indicates that the meter cost and pipe flow meter
ratio increased with DP. The pattern of the grayscale color change in
Fig. 9(a) is similar to that in Fig. 6(a), even though TotalMeterCost
was not optimized in the three-objective optimization. The Pareto
fronts from the two optimizations presented in the two-dimensional
plots were also quite similar [Fig. 9(b)].

These results were presented because it was very challenging
to find solutions that dominated all four objectives. Thus, the
three-objective solutions were revisited in the four-objective optimi-
zation, even though they were not provided as initial solutions. The

optimization results of CostFactor ¼ 1 and 3 (not presented here)
had similar patterns to those of CostFactor ¼ 2 with respect to the
maximum number of pipe flow meters included, shape of the Pareto
optimal fitness landscape, and revisited three-objective optimization
solutions (CostFactor ¼ 1).

Pareto-Optimal Meter Layout Comparison

In order to check the meter locations determined from the MOMP
model, a representative solution was selected based on engi-
neering judgement from each study network. Each had the same
TotalMeterCost ¼ 9 (two pipe flow meters were included) and
similar RF of approximately 0.11. In Fig. 10, the selected solution
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Fig. 7. Pareto-optimal solutions obtained from the proposed MOMP model with three objectives (maximize DP, minimize RF, and minimize CVMR)
for the Balerma network given that seven meters are available: (a) three-dimensional plots of DP and RF; (b) two-dimensional plots of DP and RF;
(c) DP and CVMR; and (d) RF and CVMP. The solution points in (a) are filled with a grayscale representing each solution’s pipe flow meter ratio.
The asterisks in (b–d) are nondominated solutions with respect to the two objectives considered in each two-dimensional plot.
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Fig. 8. Scatter plots of the pipe flow meter ratio and three objective functions for the Austin network: (a) DP; (b) RF; and (c) CVMR. Asterisks are
nondominated solutions with respect to the two objectives considered in each two-dimensional plot.
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for the Austin network of DP ¼ 0.981 and CVMR ¼ 0.003 is
marked as a diamond among all Pareto front solutions, which are
represented as open circles in the two-dimensional plot of DP and
RF. The solution of DP ¼ 0.855 and CVMR ¼ 0.246 was selected
for the Balerma network and marked as a cross. Among the solu-
tions with an acceptable RF (i.e., <10%), those of the Austin
network had a higher detection effectiveness than those of the
Balerma network (Fig. 10), as confirmed in the previous section.
The Balerma network’s solutions dominated the Austin network’s
solutions when DP > 0.99 (Fig. 10), although these solutions would
not be preferred because of the high RF > 0.15.

Fig. 11 shows the meter locations of the selected solutions.
It was confirmed that a common strategy was applied for pipe
flow meters, whereas different network-specific approaches were
adopted for the pressure meters. Regardless of the network, pipe
flow meters were placed at informative locations where either a
large volume of water demand flowed or there were interconnec-
tions between subareas. That is, Meters 1 and 2 (pipe flow meters)
were installed downstream of the single source in the Austin net-
work [Figs. 5(a) and 11(a)]. For the Balerma network, Meter 62

was placed at the interconnection pipe between subareas supplied
by transmission lines with pipe sizes of 452 and 362 mm, and
Meter 416 was located downstream of the north-end source supply-
ing the second-largest volume of water demand among the four
sources [Figs. 5(b) and 11(b)].

Although the source supplying the largest volume of flow was
positioned in the middle of the loops [i.e., reservoir on the left side
of the pressure sets in the inset of Fig. 11(b)], the north-end res-
ervoir’s peripheral hydraulics helped achieve high detectability in
addition to supplying water demand (e.g., detecting pipe bursts
missed by pipe flow meters). That is, all pressure meters were in-
stalled one after the other (Meters 191, 193, 200, 203, and 204) in
the downstream subsection where the nodal elevation was highest
within the network [Fig. 11(b)]. Therefore, pressure drops from
pipe bursts at the low-pressure nodes were more apparent compared
to their normal average pressure than those at other nodes. On the
other hand, pressure meters were located either near the end of net-
work (Meters 11 and 65) or in the middle of a looped subsection
(Meter 112) for the Austin network [Fig. 11(a)].

As indicated in Table 1, the main detector was a pipe flow meter
for the Balerma network (i.e., Pipe flow meter 62 had the highest
DP of 0.673), whereas it was a pressure meter for the Austin net-
work (i.e., DP of the pressure meters was higher than 0.86). These
results highlight that the role of each type of meter varies for differ-
ent networks of different configurations, characteristics, and num-
bers of components.

Different distributions of detection roles were also found with
the detection matrix. Fig. 12 shows part of the detection matrix for
the selected Pareto-optimal meter sets of the two study networks.
Burst events are in rows, meters are in columns, and a solid cell
indicates an event detected by a meter. The pressure meters were
confirmed to detect common bursts, with the pressure meters iden-
tifying different bursts. These results agree with those of Hagos
et al. (2016). A new and noteworthy finding is that using the pro-
posed MOMP model could ensure that the two types of meters did
not overlap in the optimal meter networks for maximizing DP and
optimizing other objectives. For example, the two pipe flow meters
in the Austin network seemed to be designed to detect bursts
missed by pressure meters, and the pressure meters in the Balerma
network were intended to detect the remaining pipe bursts missed
by the two pipe flow meters (Fig. 12).

(b)(a)
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Fig. 9. Pareto-optimal solutions obtained with full four objectives (minimize TotalMeterCost, maximize DP, minimize RF, and minimize CVMR) for
the Austin network given that seven meters are available and CostFactor = 2 (pipe flow meter cost is twice the pressure meter cost): (a) three-
dimensional plot with TotalMeterCost value on a filled color scale; and (b) two-dimensional plots of DP and RF compared with Pareto-optimal
solutions when CostFactor ¼ 1 [Figs. 6(c and d)]. In (b), the Pareto-optimal solutions obtained with CostFactor ¼ 2 are diamonds, nondominated
solutions with respect to DP and RF are crosses, and solutions with CostFactor ¼ 1 brought from Fig. 6(b) maintain their symbol styles.

Fig. 10. Projection of the Pareto-optimal solutions for the two
study networks obtained assuming CostFactor ¼ 2 onto the two-
dimensional plot of DP and RF. A similar RF and same TotalMeterCost
solution (RF ∼ 0.1 and TotalMeterCost ¼ 9) were selected from each
network. These are indicated by an arrow from an information box con-
taining the values of the four objectives.
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Summary and Conclusions

This paper presented a MOMP model for WDS pipe burst detection
to minimize the normalized total meter cost (i.e., TotalMeterCost),
maximize DP, minimize RF, and maximize the meter network’s
mechanical reliability. A novel method based on single-meter fail-
ure simulation was used to quantify the CV of DPs of a partially
impaired meter network (i.e., CVMR); this was used as an indicator
of the mechanical reliability. The optimal ratio between pressure
and pipe flow meters was identified given a predefined number of
meters (i.e., nmeter) in the proposed model, where the normalized
meter cost of the latter is defined as CostFactor assuming that the
former’s cost is equal to 1. The proposed MOMP model was dem-
onstrated on the Austin and Balerma networks with different con-
figurations, characteristics, and numbers of components under the
assumption that a total of seven meters was available.

First, the proposed model was applied to the two study net-
works assuming CostFactor ¼ 1, so TotalMeterCost ¼ 7 for all

solutions. The results confirmed that, regardless of the network, DP
increased when more false alarms were allowed (i.e., by increasing
RF), and there was a marginal DP increase but significant RF in-
crease for high-DP solutions. The Balerma network had a higher

(a) (b)

Fig. 11. Meter layout of the selected Pareto solutions in Fig. 10 for (a) Austin; and (b) Balerma networks.

Table 1. Individual meters’ DP with the optimal meter sets selected in
Fig. 10 for the two study networks

Network Meter location Location number DP

Austin Pipe 1 0.847
2 0.827

Node 9 0.868
11 0.863
63 0.869
65 0.872

112 0.865

Balerma Pipe 62 0.673
416 0.180

Node 203 0.197
204 0.197
193 0.197
191 0.205
200 0.196

Fig. 12. Detection matrix of the selected Pareto solution in Fig. 10 for
the first 200 burst events in the two study networks. Rows are 200 burst
events, and columns are seven meters. The first two columns are pipe
flow meters. The order of the meters from left to right is equivalent to
the order in Table 1 from top to bottom. A solid cell (i, j) indicates that
the event i was detected by meter j.
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overall detectability than the Austin network because of the form-
er’s high connectivity. Although no significant relation between RF
and CVMR was observed, a nonlinear tradeoff relationship was
found between DP and CVMR (i.e., CVMR increased with DP) for
both networks. High-DP solutions incorporated more pipe flow me-
ters, which have relatively low DP but detect different unique burst
events, whereas pressure meters detect common burst events. This
caused a high variation in the partially impaired meter network’s
DPs, which resulted in a high CVMR. Very high CVMP could be
achieved by including pressure meters only, which suggests that
pressure meters should be used to ensure high mechanical reliability.

Then, the multiobjective problems were solved when
CostFactor ¼ 2 (i.e., the pipe flow meter cost was twice the pres-
sure meter cost). The Austin and Balerma networks included maxi-
mums of five and two pipe flow meters, respectively. These are the
same maximum values for the solution obtained from the meter
placement with CostFactor ¼ 1. The Pareto-optimal fitness land-
scape when CostFactor ¼ 2 was similar to that of CostFactor ¼
1 because the solutions obtained from the latter optimization had a
nondominated nature with respect to most of the four objectives.

Finally, an optimal meter layout derived from the proposed
MOMP model was selected for each network to have the same
TotalMeterCost ¼ 9 and RF of around 0.11 and compared with
respect to the adopted meter location strategies. The selected sol-
ution for the Austin network had a higher DP and lower CVMR
than that for the Balerma network.

The adopted meter location rules were as follows: pipe flow
meters were located at informative locations where either a large
volume of water demand flowed or interconnections between sub-
areas, whereas different network-specific approaches were used for
pressure meters. For the Balerma network, all pressure meters were
installed downstream of a low-pressure zone. On the other hand,
pressure meters were located either near the end of network or in
the center of a looped subsection for the Austin network. The main
detector was a pipe flow meter for the Balerma network but a pres-
sure meter for the Austin network. This indicates that the role of
each type of meter varies for different networks of different char-
acteristics. Therefore, the proposed MOMP can be a useful tool for
determining the optimal meter location and best combination of
meters for high detectability and mechanical reliability of a specific
network of interest.

This study had several limitations that future research must ad-
dress. First, this study presented the MOMP results assuming that
seven meters were available in total, as determined from prelimi-
nary sensitivity analyses. A thorough sensitivity analysis should be
performed for a network to determine how the relationships among
the four objectives (TotalMeterCost, DP, RF, and CVMR) change
with different numbers of meters. Second, the correlation between
CVMRs under single- and multiple-failure conditions should be
investigated to confirm the representativeness of the single-failure
approach. In addition, meter failure probability can be considered
when quantifying CVMR based on a Monte Carlo simulation.
Third, the performance of NSGA-II with SBX and PM in the multi-
objective solution space should be investigated in order to better
find optimal meter sets of high quality. Finally, the proposed meter
network mechanical reliability can be considered in OMP problems
for other purposes (e.g., WDS state estimation).
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